首页> 外文OA文献 >Nonlinear Filtering Techniques Comparison for Battery State Estimation
【2h】

Nonlinear Filtering Techniques Comparison for Battery State Estimation

机译:电池状态估计的非线性滤波技术比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators\u27 performance and their computational complexity are analyzed.
机译:估算算法的性能对于电动汽车中电池的正确运行至关重要,因为估算不当将不可避免地危及依赖不可测量量的运行,例如充电状态和健康状态。本文比较了三种非线性估计算法的性能:扩展卡尔曼滤波器,无味卡尔曼滤波器和粒子滤波器,其中考虑了锂离子电池模型。这些算法的有效性通过针对操作数量和所需执行时间针对其计算复杂性产生准确估计的能力来衡量。分析了估计器性能与计算复杂度之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号